Problem 6

A subtangent is a portion of the x-axis that lies directly beneath the segment of a tangent line from the point of contact to the x-axis. Find the curves that pass through the point $(c, 1)$ and whose subtangents all have length c.

Solution

Figure 1: This is a figure illustrating a random subtangent (in bold).
We know from algebra that if we have two points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then the slope of the line going through them is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The first point is $(x-c, 0)$, the x-intercept, and the second point is (x, y), a random point on the graph. The slope at x is $d y / d x$. So

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y-0}{x-(x-c)} \\
\frac{d y}{d x} & =\frac{y}{c}
\end{aligned}
$$

Solve with separation of variables.

$$
\begin{aligned}
\frac{d y}{y} & =\frac{d x}{c} \\
\ln |y| & =\frac{x}{c}+D \\
|y| & =e^{x / c} e^{D} \\
y(x) & =A e^{x / c}
\end{aligned}
$$

Since the graph has to go through $(c, 1)$, this means that $y(c)=1$, and the constant of integration can be determined. $y(c)=A e=1$, which means $A=e^{-1}$. Therefore,

$$
y(x)=e^{\frac{x}{c}-1} .
$$

